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Abstract. We report a theoretical analysis of the phonon thermal conductance, κ(T ), for single wall carbon
nanotubes (SWCN). In a range of low temperatues up to 100 K, κ(T ) of perfect SWCN is found to
increase with temperature, approximately, in a parabolic fashion. This is qualitatively consistent with
recent experimental measurements where the tube-tube interactions are negligibly weak. When the carbon-
carbon bond length is slightly varied, κ(T ) is found to be qualitatively unaltered which implies that the
anharmonic effect does not change the qualitative behavior of κ(T ).

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
44.10.+i Heat conduction – 63.22.+m Phonons or vibrational states in low-dimensional structures
and nanoscale materials

1 Introduction

Since its original discovery, carbon nanotubes [1] have
received a great deal of attention due to fundamental
physical interest on nano-scale systems, as well as due to
nanotubes′ potential for useful industrial applications [2].
A very important recent advance has been the fabrication
of high-purity crystalline bundles of nearly mono-disperse
single wall carbon nanotubes [3–5]. This allows better ex-
perimental control and produces accurate data. It also
provides opportunities and points to new directions for
theoretical analysis of SWNT. So far, the electronic and
mechanical properties of carbon nanotubes have been ex-
tensively investigated while there also exist several new
measurements of thermal properties of these systems [6–9].
The purpose of this work is to present our theoretical and
numerical analysis of thermal conductance of SWNT.

Of particular interest to this work is the recent
experimental measurements of thermal conductance of
nanotubes κ(T ) [6]. This quantity describes the ther-
mal current induced by a temperature gradient, and we
will analyze a two-terminal measurement of it. Hence,
maintaining temperatures at the left and right lead to
be TL, TR respectively, κ(T ) is defined as κ(T ) ≡ Q̇/∇T ,
where Q̇ is the thermal current flowing through the nan-
otube. The experimentally measured thermal conductance
of carbon nanotubes indicates that the most essential con-
tribution comes from phonons [6,7]. The data of refer-
ence [6] on aligned multiwall nanotubes suggested that at
low temperature up to ∼120 K, κ(T ) can be well fit by
quadratic form in T , i.e. κ(T ) ∼ T 2. On the other hand,
the measurements [8] of specific heat C(T ), which is pro-
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portional to κ(T ), also showed a power law dependence,
however with a power larger than unity but slightly less
than two [8]. Finally, measurements on crystalline ropes
of SWNT indicates [7] a linear temperature dependence
up to 30 K and an upward bend near 30 K on the κ(T )
versus T curve [7]. How to interpret these experimental
observations presents a challenge to theory. Indeed, al-
though there exist a vast literature on theoretical analysis
of thermal transport of both electrons and phonons in the
context of mesoscopic physics [11–19], direct investigation
on carbon nanotubes is rare [8,10,20].

The precise temperature power law in thermal con-
ductance of nanotubes is expected to depend on, among
other things, the detailed phonon dispersion. In this work
we will calculate the dispersion for several SWNT and
investigate its consequence. We neglect electrons as their
contribution to κ(T ) of nanotubes can only be observed at
temperature less than 1 K [10]. Our analysis of SWNT is
based on the Tersoff-Brenner’s empirical potential [21,22]
for carbon to calculate the phonon dispersion. We then ap-
ply a Landauer-Buttiker-type formalism to compute the
lattice thermal conductance in various SWNTs, for which
the thermal transmission coefficient is assumed to take a
Breit-Wigner form. The predicted κ(T ) shows a quadratic
form in temperature for both zigzag and armchair SWNT.
Using one experimental data to fix an overall shift of
κ(T ), our predicted κ(T ) is consistent with the experi-
mental data of reference [6] as the tube-tube interactions
are so weak that we could compare our calculations for
single wall carbon tubes with the experimental results on
multiwall tubes. As pointed out in reference [7], since the
tube-tube interactions are also weak, the measured κ(T )
is linear below 30 K and shows an upward bend slightly
near 30 K, i.e. the curve appears to be also parabolic-like
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from 8 K to 100 K. When the carbon-carbon bond length
is slightly varied, our results indicate that κ(T ) does not
change qualitatively, implying that the anharmonic effect
does not alter its qualitative behavior.

The rest of this paper is organized as follows. In the
next two sections we outline the analysis of phonon dis-
persion and κ(T ). Section 4 presents the numerical data
while a brief summary is given in the last section.

2 Lattice thermal conductance

We start by writing down a multi-probe formula for ther-
mal current transmission in the same spirit as the familiar
Landauer-Buttiker formula [23] for electron transport. As
discussed above we neglect contributions from electrons
and deal with the lattice vibration as a phonon gas. The
thermal current is therefore driven by a temperature gra-
dient and carried by phonons from the probe to another.
The thermal current can be written as

Q̇α =
1
h

∫
dE E

∑
β

fβ(E) Aαβ(E) (1)

where α, β label the leads, h is the Planck constant, E

is the phonon energy, and fβ(E)=1/(e
E

kBTβ −1), is the
phonon distribution function with temperature Tβ at
lead β. The thermal transmission function Aαβ(E) is
defined as

Aαβ(E) = δαβ − S†αβ(E)Sαβ(E), (2)

where Sαβ is the scattering matrix for phonons. Equa-
tions (1, 2) are similar to the Landauer-Buttiker for-
mula [23] for electron transport. Let the energy of the
sth branch of phonon be ~ωs. The thermal current can be
rewritten as

Q̇α =
1

2π

∑
s

∫
dωs ~ωs

∑
β

fβ(~ωs) Aαβ(~ωs) (3)

or

Q̇α=
1

2π

∑
s

∫ ∞
0

dq · vs(q) ~ωs(q)
∑
β

fβ(q) Aαβ(q), (4)

where vs(q) = ∇qωs(q) is the group velocity.
For the special case of two probe measurement in

one dimension, one can easily confirm that equation (4)
is reduced to the form which has been used to study
the quantized thermal conductance of dielectric quantum
wires [24]. We have

Q̇ =
∑
s

∫ ∞
0

dk
2π
~ωs(k)vs(k)(fR − fL)ζs(k), (5)

where ωs(k) and vs(k) = ∂ωs(k)
∂k are the frequency and the

velocity of normal mode s of the wire with wave vector k,
respectively, ζs(k) is the phonon transmission probability
through the wire, and fα is the phonon distribution func-
tion at the right or left lead indicated by α (= R,L). We re-
fer interested readers to references [25,26] for more details

about the present formulation. For the SWNT the thermal
conductance, κ = Q̇/∇T , can be numerically computed
through the following form

κ =
∆L

2π

∑
s

∫ ωmax

ωs(0)

dω~ω(fR(ω)− fL(ω))ζs(ω)/∆T. (6)

where ∆T = TR − TL is the temperature difference be-
tween the two leads, ∆L is the length of the SWNT,
and ωmax is the maximum of phonon modes in SWCNs,
which was investigated elsewhere [27]. To proceed, it is
clear that the phonon frequencies of SWNT at Γ point
and the transmission function ζs(ω) are required. There
are a number of methods which can be applied to obtain
the phonon frequencies, and we will present our calcula-
tion of this quantity in the next section. On the other
hand, it is rather complicated to accurately determine the
phonon transmission function. For a perfect infinite har-
monic lattice the thermal conductivity diverges because
every mode transmits perfectly. The contacts play an im-
portant role as in case of electron transport. Even for per-
fect phonon transmission, the thermal conductance is fi-
nite due to the contact resistance. Defects, boundary scat-
terings, phonon-phonon interactions and other scattering
mechanisms in the conductor inevitably introduce thermal
resistances. The transmission function ζs(ω) is contributed
by lattice imperfection and conductor boundary, and the
anharmonic effect due to interactions can be included in
terms of the renormalized temperature-dependent disper-
sion relation. To obtain ζs(ω) for SWNT one should in
principle solve the scattering of a phonon wave by the
atoms of the nanotube which is a nontrivial problem not
solved so far. However if the length of a conductor is much
larger than its cross-section size, ζs(ω) can be approxi-
mately obtained by solving linear elastic equations assum-
ing the conductor to be an uniform elastic medium [24].
In 1D, the continuum mechanics results indicate [24] that
ζs(ω) is dominated by sharp resonances reminiscent of a
resonance transmission of phonon modes: ζs(ω) = 1 at
resonant energies and sharply becomes much smaller for
other energies. Guided by this observation and for sim-
plicity of analysis, we shall investigate the consequence of
such a resonance transmission of phonon modes for car-
bon nanotubes by parameterizing ζs into a Breit-Wigner
form,

ζ(E) =
D2

(E −E0)2 +D2
, (7)

where D and E0 are the width of the resonance and posi-
tion of a resonance. Both of these parameters are closely
related to the effects of defects and boundary scatterings.
Furthermore, instead of directly considering anharmonic
effects, we will investigate its consequence by simply vary-
ing the carbon-carbon bond length to observe how much
the thermal conductance can vary.

3 Lattice vibrations

To calculate the phonon spectra ωs at the Γ point for
armchair and zigzag carbon nanotubes, we shall make
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R
(e)
ij Å D

(e)
ij eV βij/Å Sij δi R

(1)
ij Å R

(2)
ij Å α0 c0 d0

1st 1.315 6.325 1.5 1.29 0.80469 1.7 2.0 0.011304 19.0 2.5

2nd 1.39 6.0 2.1 1.22 0.5 1.7 2.0 2.0813× 10−4 330 3.5

use of the Tersoff-Brenner empirical potentia [21,22] for
carbon. Although this empirical potential only gives an
approximation to the vibration frequency of nanotubes,
it does capture the basic and qualitative characteristics
of their phonon spectra. Tersoff-Brenner’s potential is
also numerically efficient to allow investigations of large
systems which is required for our study. The parameters
for this potential have been determined before and there
are two sets of them which have been widely used [22] for
structure analysis of carbon:

see Table above

The meaning of the symbols refers to reference [22]. We
have checked that for SWNT the second set of Brenner’s
parameters gave results closer to those obtained by using
Tersoff parameter [21]. We shall use in our calculations the
second set values shown in the table. In addition, experi-
mental measurements have shown that phonon modes of
SWNT have frequencies up to 1700 cm−1. We have numer-
ically confirmed that if the equilibrium distance parameter
R

(e)
ij = 1.33 Å, which is a value in between the first and

second Brenners’s parameter sets (see table), the obtained
vibration frequencies at Γ point is consistent with exper-
imental data [28]. On the other hand, all the parameter
sets give similar total binding energy. For instance, for the
armchair (4,4) nanotube, the binding energy per atom is
found to be −6.8920, −7.0881, −6.9993 and −7.0456 eV
using Tersoff′s potential, the first Brenner’s potential, the
second Brenner’s potential and our modified second Bren-
ner’s potential, respectively. Figure 1 presents a compari-
son between these empirical potentials. In all subsequent
numerical analysis we shall utilize the revised value of
R

(e)
ij .

The lattice vibration frequencies of the SWCN at Γ
point can be obtained by diagonalizing the dynamical ma-
trix given by

Dαβ(k, lk′) =
1
M

∑
l

Φαβ (0k, lk′) eiq·(R(0k)−R(lk′), (8)

where q is the wave vector, the perturbation of Rα(lk) is
taken to be 0.001 Å, and

Φαβ (lk, l′k′) =
∂2Eb

∂Rα (lk) ∂Rβ (l′k′)
·

Once the phonon modes are obtained, we are able to calcu-
late thermal conductance by equation (6). Here we would
like to point out that although there have been a number
of studies dedicated to the lattice vibrations of carbon
nanotubes so far [2], it is not suitable for us to adopt di-
rectly the phonon data in literature. This is because in

Fig. 1. The carbon-carbon two-body empirical potential as a
function of the bond length for four sets of parameters. Our nu-
merical analysis is based on the modified Brenner II potential.

our situation we need frequency data for different sizes of
carbon nanotubes as well as the data of frequencies when
the carbon-carbon bond length is simply varied in order
to retrieve the anharmonic effects. In principle, we can use
ab initio molecular dynamics method to get the frequen-
cies if the system is not too big. Since in the present case
the system contains hundreds of atoms, it is not easy to
obtain useful data on the basis of ab initio simulations, and
for a practical purpose it is better to invoke an empirical
potential to compute the phonon spectra of SWNCs with
larger sizes.

4 Results

As discussed in the introduction, we are investigating long
SWCNs such that the left end is at temperature TL and
the right end is at temperature TR. Let us first consider
the basic characteristic of κ(T ). At very low temperatures
where only the massless modes (i.e. ωs(0) = 0) are rele-
vant, κ/T is simply a constant independent of tempera-
ture. At slightly higher temperature, the high frequency
modes set in because a SWNT is a quasi-one dimensional
system in which each unit cell contains so many atoms
that there are many modes with nonzero cutoff frequen-
cies. Therefore κ/T will deviate from the constant behav-
ior when temperature is increased.
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Fig. 2. Thermal conductance κ versus temperature for differ-
ent C-C bond lengths for zigzag (11,0) SWCN assuming per-
fect phonon transmission. Inset: The temperature-dependence
of the thermal conductance for armchair (11,11) and zigzag
(11,0).

The inset of Figure 2 shows the temperature depen-
dence of thermal conductance for the armchair (11,11)
and the zigzag (11,0) carbon nanotubes when the trans-
mission is perfect, i.e., by setting ςs = 1 for all the phonon
modes. For these cases our results indicate that κ(T ) in-
creases, approximately, in a parabolic fashion as a function
of temperature. We found that anharmonic effect has only
a slight influence on the temperature dependence of κ(T ),
and this is shown by calculating κ(T ) for different values
of carbon-carbon bond length which generates different
phonon spectra at the Γ point. Figure 2 shows κ(T ) for
three different bond lengths 1.42 Å, 1.44 Å and 1.46 Å
for a zigzag (11,0) system. This result clearly shows that
the basic shape of κ(T ) is not changed qualitatively by
varying the bond length. The magnitude of κ(T ) is how-
ever dependent on bond length as expected: the longer the
bond length the lower the thermal conductance value.

In a real SWNT system the flow of thermal current is
not perfect due to scattering of phonons by various lat-
tice imperfections. It is thus inevitable that ςs < 1 in
general and only at resonances [24] do we have ςs = 1
(see Eq. (7)). Nevertheless, as long as the transmission
resonances are sharp for a large number of modes, which
is the case shown by previous numerical calculations for
various one-dimensional wires [24], we do not expect qual-
itative changes of behavior from that shown in Figure 2.
On the other hand, it is interesting to examine the oppo-
site situation, namely the transmission is dominated by
a single resonance, i.e. the transmission coefficient ςs is
centered at a single mode E0 with a resonance width D
(see Eq. (7)). Therefore for a small D only very few terms
in the summation of equation (6) have substantial contri-

Fig. 3. Thermal conductance κ versus temperature for differ-
ent resonance width (D) fixing D = E0 in unit of cm−1.

bution to κ(T ), while a largeD should give a similar result
as those of Figure 2. Figure 3 shows this behavior for a
number of values of D by fixing E0 = D for simplicity.
Indeed, a large D which essentially gives ςs = 1 for a wide
range of modes, gives a parabolic temperature dependence
for κ(T ). For small values of D , on the other hand, not
only the value of κ is reduced because only a few modes
contribute, but also the temperature dependence changes
qualitatively. This exercise indicates the importance of the
quality of phonon wave transmission.

Recently the thermal conductance of the carbon nan-
otubes has been experimentally measured [6,7]. In both
experiments, the results show clearly that the tube-tube
interactions are quite weak, implying that it would be rea-
sonable at some extent that is also capable of comparing
the measured results for multi-wall carbon nanotubes with
the calculated ones for single wall tubes without generat-
ing qualitative deviations, as it indeed is. Our result is
found to be qualitatively consistent with the experimen-
tal data [6] as shown in Figure 4 where the circles are
the measured data and the dotted and dashed lines are
our calculated results. The solid line is a least square fit
to the experimental data in the range of 10 K to 120 K
which gives κ = 0.00089T 1.97(WK−1M−1). Hence the ex-
perimental data indicate a parabolic dependence on tem-
perature. Surprisingly, our calculated value of κ is even
quantitatively reasonable considering the various approx-
imation used in our analysis: since the Lorentz number
k2

Bπ
2

3h ∼ 10−12(JK−2S−1), the size of nanotube is on the
order of nm ∼ 10−9(M), and at T = 100 K our calculated
κ ∼ 100 in units of Lorenz number (e.g. Fig. 2), gives
the same order of magnitudes as the measured data. To
plot our calculated curves in Figure 4, we have used one
experimental data point at T = 120 K to fix the scale
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Fig. 4. Comparison of theoretical and experimental results.

of κ. It is clear that for both zigzag and armchair tubes,
the predicted curves qualitatively agree with the measured
data quite reasonably. In reference [7], the measured κ(T )
is linear below 30 K and an upward bend slightly near
30 K, i.e. the curve appears also to be parabolic-like from
8 K to 100 K. The linear dependence below 30 K in refer-
ence [7] may be the results of particular phonon scattering
mechanisms or the imperfection phonon transmission. As
a result, our results appear to suggest that the thermal
transport in nanotubes might primarily be mediated by
lattice vibrations, and the electron contribution is less im-
portant.

5 Summary

We have studied the properties of the thermal conduc-
tance of single-walled carbon nanotubes by means of
a Landauer-Buttiker-like thermal conductance formalism
using a modified Tersoff-Brenner potential. We found
that the thermal conductance of the SWCN increases al-
most parabolically with increasing temperature at perfect
transmission at low temperature. Our results are qualita-
tively consistent and quantitatively on the same order of
magnitude as the measured data [6,7] because the tube-
tube interactions in these carbon nanotubes are weak.
This allows us to suggest that in the experimental device
the phonon transmission is quite ideal, which is consistent
with the fact that the high quality of the nanotubes [6,7]
was ensured in the measurements. It also suggests that it is
the phonon contribution which gave, to a large extent, the
observed behavior of temperature dependence of the ther-
mal transport in SWCNs. In addition, our results suggest

that the anharmonic contribution to the thermal conduc-
tance of SWCN is only quantitative but not qualitative.

Although the simple analysis presented in this paper
has given a qualitative understanding of the experimental
data of references [6,7], a number of further improvements
to theory are desirable. An extremely difficult subject is
the calculation of phonon transmission function for carbon
nanotubes. Our choice in this work is the phenomenolog-
ical Breit-Wigner formula motivated by one-dimensional
theory of linear elasticity. For realistic nanotube devices,
especially those with lattice imperfections, it will be useful
to accurately compute the transmission coefficient. An-
other improvement to the present work involves a more
accurate analysis of the phonon frequency, perhaps from
first principle methods. Finally, since experimental mea-
surements are usually performed for a bundle of carbon
nanotubes, if the tube-tube interaction is not weak it is
also interesting to investigate the effect of inclusion of
tube-tube interactions [29].
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